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Abstract— We assume that the states of an unstable dynam-
ical system are encoded and sent to an estimator through an
uncertain channel, which is a channel disturbing its inputs in a
nonstochastic manner. The encoder’s codeword is also fed into
another uncertain channel, at whose output an eavesdropper is
listening. The estimator should obtain a uniformly bounded
system state estimation error, whereas the eavesdropper’s
information about the system states should be subject to
a security constraint. We find a condition on the relation
between the uncertain channel from encoder to estimator and
the uncertain channel from encoder to eavesdropper which if
satisfied allows for at least one of the two following security
criteria to hold: The volume of the set of states possible
acccording to the eavesdropper’s information tends to infinity
at exponential speed—by itself (strong security) or if divided
by the volume of the set of states possible according to the
estimator’s information (weak security).

I. INTRODUCTION

With the increasing deployment and growing importance
of cyber-physical systems, the question of their security
has recently become a focus of research activity in control
theory [5]. One central vulnerability of networked control or
estimation is the communication channel between plant and
controller/estimator and possibly the feedback channel from
the controller to the plant. One type of attack on the channels
is to actively interfere with transmitted information with the
goal of degrading the control or estimation performance (e. g.
[1], [2], [4], [10], [11]). However, remote estimation of an
unstable plant also entails the possibility of eavesdropping.
An adversary might have the chance to overhear the trans-
mitted information and to obtain its own system estimate.
This paper addresses the question of what can be done to
protect the transmitted information from such an attacker.

We consider a scalar, linear, discrete-time, time-invariant
linear system. Its initial state is uncertain, i.e., it is an
arbitrary element of a bounded interval. The possible initial
states are not weighted in any way. Further, the system
dynamics is also subject to nonstochastic disturbances which
are time-invariant and can assume any value in a fixed,
bounded interval. This kind of disturbances is common in
robust control.

An estimator has the task of estimating the system state.
It produces one estimate for every state produced by the
system. Thus for every time step, one can calculate the
absolute difference between the state at that time and its
estimate. The estimator’s goal is that the estimation error, i.e.,
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Fig. 1. The problem setup. The pair (TB ,TC) of uncertain channels
forms an uncertain wiretap channel.

the supremum over time of all these absolute differences, be
bounded uniformly in all possible system state trajectories.

The estimator does not have direct access to the system
state. Instead, an entity called the encoder observes the
system state. It is linked to the estimator through an uncertain
channel, which has its own finite input and output alphabets.
In an uncertain channel, every input generates an output,
but these outputs are disturbed in a nonstochastic manner.
The encoder transforms every observation into one among
a fixed number of messages. This message is mapped to
a codeword and fed into the channel. If the encoder uses
the right set of codewords, the estimator is able to exactly
recover the message transmitted by the encoder, and thus
obtains information about the system state.

The codeword sent by the encoder to the estimator is also
fed into another, different, uncertain channel, whose output is
observed by an adversarial party, the eavesdropper. Since the
eavesdropper is assumed to know the encoder’s scheme of
transforming system states into codewords, in this way it also
obtains some information about the system state. The goal
is to give the eavesdropper as little information as possible.
In mathematical terms, the volume of the set of system
states which are possible according to the eavesdropper’s
information should tend to infinity at exponential speed, at
least if divided by the volume of the set of system states
which are possible according to the estimator’s information.
In the former case, we call the security achieved strong
security, in the latter case weak security.

The pair of uncertain channels consisting of the uncertain
channel from the encoder to the estimator and the uncertain
channel from the encoder to the eavesdropper is called an
uncertain wiretap channel. In this paper we identify a class
of uncertain wiretap channels which allow for a transmission
scheme between the encoder and the estimator such that both
of the goals mentioned above are achieved at the same time:
the estimator’s estimation error is uniformly bounded and
the system state is strongly or weakly secure with respect to
the eavesdropper. Whether only weak or even strong security
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Fig. 2. An uncertain wiretap channel. A line between ai and bj indicates
that bj ∈ TB(ai), similar for ai and cj .

is possible depends on how the system parameters compare
with the channel parameters. Strong security implies that the
eavesdropper’s estimation error tends to infinity as time tends
to infinity. Central to achieving strong security is the system’s
instability, which ensures that small uncertainties induced
for the eavesdropper by the employed transmission scheme
enlarge over time and make the volume of the set of possible
states diverge exponentially.

This work is a direct extension of our previous paper [13].
In [13], the setting was exactly the same, only the security
criterion differed from the two applied here. In [13], it was
required that for every possible sequence of outputs of the
uncertain channel from encoder to eavesdropper, there be
at least two system state trajectories such that the absolute
distance between the two states at a given time grows to
infinity as time tends to infinity. This security criterion is
weaker than the above strong security criterion, but it is not
in general weaker or stronger than the above weak security
criterion.

To our knowledge, the only previous paper combining
estimation and security for an unstable system is [7], which
however considers stochastic disturbances both in the system
and the channel and uses a non-operational security criterion
based on entropy whose implications are not immediately
clear. The motivation for the nonstochastic setup considered
in this work comes from Nair [9], who considered esti-
mation and control of an unstable dynamical system with
nonstochastic disturbances over an uncertain channel. Nair’s
restriction of the channel to have nonstochastic disturbances
in contrast to channels with stochastic disturbances can be
justified with the work [8] by Matveev and Savkin, who
proved that if the system and channel disturbances are
stochastic and the estimator’s goal is to obtain an almost
surely bounded estimation error, what matters about the
communication channel is only which inputs can generate
which outputs, but not with which probability this happens.

The outline of this paper is as follows. In Section II, the
problem is defined. Section III gives the main results and
proofs of the main theorems, together with an outline of the
analysis behind these proofs.

Notation: Logarithms are to the base 2. Given two sets
A,B ⊂ R and a number λ, we define

λA+B := {c ∈ R : c = λa+ b for some a ∈ A, b ∈ B}.

Sequences (at)
T
t=0 of real numbers or integers are denoted

by a(0 : T ), where T may also be infinite.

II. REMOTE ESTIMATION AND UNCERTAIN
CHANNELS

Let λ > 0 and consider the unstable system

x(t+ 1) = λx(t) + w(t). (1)

The sequence of disturbances w(0 :∞) is unknown a priori
and can be any element in [−Ω/2,Ω/2]∞, where Ω ≥ 0 is
fixed and known. The initial state x(0) can attain any value
in the bounded interval I0 and is also unknown a priori.

The estimator can only obtain its information from the
encoder by transmission through an uncertain channel, and
the eavesdropper also listens through an uncertain channel.
The problem setup is illustrated in Fig. 1.

Definition 1: 1) An uncertain channel is a mapping
T : A → 2B∗ , where A,B denote arbitrary alphabets
and 2B∗ is the power set of B without the empty set.

2) An uncertain wiretap channel is a pair (TB ,TC) of
uncertain channels, where for finite alphabets A,B,C,
the channels are TB : A→ 2B∗ and TC : A→ 2C∗ .

The reason why we only allow uncertain wiretap channels
with finite alphabets is to exclude pathological cases. We
define uncertain channels for general alphabets because we
will eventually also define the quantizer as an uncertain
channel, where the input alphabet obviously is infinite. An
uncertain wiretap channel is shown in Fig. 2.

For every input a ∈ A, the uncertain channel T generates
a nonempty set T(a) of possible outputs. If a is an input into
T, then one element of T(a) will be the output. The outputs
are not weighted according to any probabilities. Note that
every mapping g : A → B can be regarded as an uncertain
channel each of whose output sets is a singleton. We write

ran(T) :=
⋃
a∈A

T(a)

for the set of outputs of T which can be generated by T.
Given two uncertain channels F : M → 2A∗ and T : A →
2B∗ , we define the concatenation T ◦F : M→ 2B∗ of F and
T by the rule

(T ◦ F)(m) := T(F(m)) :=
⋃

a∈F(m)

T(a),

for every m ∈M.
If a sequence a(0 : n) is to be transmitted over n + 1

time slots, where a different channel Ti is used at each time
i ∈ {0, . . . , n}, we define the set of possible outputs to be

T0:n(a(0 : n)) := T0(a(0))× · · · ×Tn(a(n)). (2)

T0:n : An+1 → 2B
n+1

∗ is an uncertain channel as well. If
T0 = . . . = Tn, then we write Tn+1 := T0:n. Property (2)
implies that channel inputs at different times do not influence
each other. We also define the reverse T−1 : B→ 2A∗ of an
uncertain channel T : A→ 2B∗ via

T−1(b) := {a ∈ A : b ∈ T(a)}.
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Clearly, for channels T0, . . . ,Tn, the reverse T−10:n of T0:n

satisfies

T0:n(b(0 : n)) = T−10 (b(0))× · · · ×T−1n (b(n)).

We denote the reverse of a channel Tn by T−n.
Now let (TB ,TC) be the uncertain wiretap channel which

has to be employed by the encoder in order to send system
state information to the estimator. The estimator, i.e., the
receiver of TB should be able to decode the transmitted
information, whereas the eavesdropper which listens on
channel TC should obtain as little information as possible.

First we describe how TB is used to convey information
about the system states to the estimator. We assume that
for each step of the evolution of the dynamical system, the
channel can be used exactly once.

Definition 2: A transmission scheme is a sequence of
quadruples (νk, nk, fk, ϕk)∞k=0, where (νk)∞k=0 and (nk)∞k=0

are bounded sequences of positive integers such that nk > νk
for at most finitely many k, and setting τk :=

∑k
i=0 νi and

tk :=
∑k
i=0 ni, for every k ≥ 0

• the k-th encoder fk : Rτk → 2A
nk

∗ is an uncertain
channel,

• the k-th decoder ϕk : Btk → Rνk is an ordinary
mapping.

fk takes the system path until time τk as input and
maps this into a codeword of length nk. We allow fk to
be an uncertain channel because the optimal encoders for
uncertain wiretap channels in general are uncertain channels
as well, see after Definition 4. The decoder ϕk takes the
first tk outputs of TB and calculates an estimate of the
states x(τk−1), . . . , x(τk−1), which have not been estimated
before. When we define the performance criterion for a
transmission scheme, it will be seen that by not allowing
ϕk to be an uncertain channel we do not lose generality.

Allowing the sequences (νk)∞k=0 and (nk)∞k=0 to differ
gives us some additional flexibility in coding, but it is not
crucial for the analysis. It can be proved that the requirements
on the two sequences ensure that the delay D of the
transmission scheme is finite, in the sense that the estimator
waits D time slots and then outputs an estimate x̂(t) of x(t)
at time t + D for all t ≥ 0. However, in this paper we
will not be concerned with the exact value of the delay and
concentrate only on the reliability and security properties of
a transmission scheme, as we will define next.

We now introduce the notation which is necessary to define
the concepts of reliability and security. For a set X ⊂ R,
we define vol(X ) to be the Lebesgue measure of X and
diam(X ) to be its diameter, i.e., diam(X ) = sup{|x− x′| :
x, x′ ∈ X}. For a set A ⊂ Rt+1 and s ∈ {0, . . . , t}, we set
A|s to be the set {a(s) ∈ R : a(0 : t) ∈ A}. We also define

diam(A) := max
0≤s≤t

diam(A|s).

An output sequence b(0 : n − 1) ∈ ran(Tn
B) and an output

sequence c(0 : n − 1) ∈ ran(Tn
C) are called compatible if

there exists an a(0 : n − 1) ∈ An such that b(0 : n − 1) ∈
Tn
B(a(0 : n− 1)) and c(0 : n− 1) ∈ Tn

C(a(0 : n− 1)).

A transmission scheme only defines a decoder at the
output of the estimator’s channel TB . But every system
path x(0 : ∞) also generates a sequence c(0 : ∞) of
eavesdropper outputs. The security criterion will be such that
transmitted information has to be secure no matter which
decoding strategy the eavesdropper applies.

Definition 3: 1) A transmission scheme
(νk, nk, fk, ϕk)∞k=0 is called reliable if there exists a
constant % ∈ [0,∞) such that for every k ≥ 0 and
every b(0 : tk − 1) ∈ Btk ,

diam(f−10:k (T−tkB (b(0 : tk − 1)))) ≤ %, (3)

ϕk(b(0 : tk − 1)) ∈ f−10:k (T−tkB (b(0 : tk − 1))). (4)

2) For σ > 0, a transmission scheme (νk, nk, fk, ϕk)∞k=0

is called σ-weakly secure if there exists a γ > 0 such
that for sufficiently large k, all output sequences b(0 :
tk−1) ∈ ran(Ttk

B ◦f0:k) and every c(0 : tk−1) ∈ Ctk

which is compatible with b(0 : tk − 1),

vol(f−10:k (T−tkC (c(0 : tk − 1)))|τk−1)

vol(f−10:k (T−tkB (b(0 : tk − 1)))|τk−1)
≥ γ · 2στk .

3) For σ > 0, a transmission scheme (νk, nk, fk, ϕk)∞k=0

is called σ-strongly secure if there exists a γ > 0 such
that for sufficiently large k and for all eavesdropper
output sequences c(0 : tk − 1) ∈ ran(Ttk

C ◦ f0:k),

vol(f−10:k (T−tkC (c(0 : tk − 1)))|τk−1) ≥ γ · 2στk .

The reason why the definition of reliability contains two
conditions is that what effectively has to be controlled is the
diameter of the set of possible states, which is (3). Condition
(4) mainly ensures that the estimation error does not exceed
the diameter of this set. It shows that one would not gain
anything by allowing ϕk to be an uncertain channel. In the
definition of both weak and strong security, for every k ≥ 0,
a volume requirement is only made at the last time slot τk−1
of the corresponding encoding block. However, since the
blocklength sequences (νk)∞k=0 and (nk)∞k=0 are bounded,
these restrictions also extend to time instances t between the
times of the form τk − 1. Observe that, if a transmission
scheme is reliable and strongly σ-secure for some σ > 0,
then it is also weakly σ′-secure for some σ′ > 0. This
justifies the terms “weak” and “strong”.

Our goal is to relate the existence of a transmission scheme
which is both reliable and (weakly or strongly) secure to
the secrecy capacity C0(TB ,TC) of the uncertain wiretap
channel (TB ,TC). The secrecy capacity was introduced in
[13] and will be defined after some necessary preparations.

Definition 4: A zero-error wiretap (n,M)-code for
(TB ,TC) is an uncertain channel F : {0, . . . ,M − 1} →
2A

n

∗ satisfying
1) Tn

B(F(m)) ∩ Tn
B(F(m′)) = ∅ for all m,m′ ∈

{0, . . . ,M − 1} with m 6= m′,
2) for every c(0 : n − 1) ∈ ran(Tn

C ◦ F) there exist
messages m,m′ ∈ {0, . . . ,M − 1} such that m 6= m′

and c(0 : n− 1) ∈ Tn
C(F(m)) ∩Tn

C(F(m′)).
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Every m is called a message and n is called the blocklength
of F.

The first condition on F says that the receiver of TB

should without any ambiguity be able to recover the message
which was sent: No possible channel output can be generated
by more than one message. The second condition on F
means that the exact opposite should hold for every output
sequence c(0 : n − 1) the eavesdropper might receive: It
should be possible to generate this output sequence by at
least two messages. Therefore, the eavesdropper cannot tell
which message actually was sent. That F can be an uncertain
channel instead of a normal mapping has to do with the
fact that using uncertain channels can strictly increase the
maximal number of messages for fixed n, see [13].

Definition 5: For n ≥ 1, let N(n) be the maximal M
for which there exists a zero-error wiretap (n,M)-code for
(TB ,TC). The number

C0(TB ,TC) := sup
n

logN(n)

n

is then called the zero-error secrecy capacity of (TB ,TC).
By the superadditivity of the sequence (logN(n))∞n=1 and

Fekete’s lemma ([3], see also [12]), the supremum in the
definition of C0(TB ,TC) can be replaced by limn→∞.

When zero-error wiretap codes are applied in the construc-
tion of secure transmission schemes, the achievable degree
of security also depends on how many messages can possibly
generate a given eavesdropper channel output.

Definition 6: An (n,M, ζ)-code is a zero-error wiretap
(n,M)-code F where |ran(F−1(T−nC (c(0 : n − 1))))| ≥ ζ
for every c(0 : n− 1) ∈ ran(TC ◦ F).

Obviously ζ ≥ 2. With an (n,M, ζ)-code, the eavesdrop-
per has for each of its outputs at least ζ messages that could
have generated this output. The interplay between M and ζ
is crucial for our main results.

Definition 7: By R0(TB ,TC) we denote the set of pairs
(r, z) of nonnegative real numbers which satisfy that for
every ε > 0 and sufficiently large n there exists an (n,M, ζ)-
code with

logM

n
≥ r − ε, log ζ

n
≥ z − ε.

If we concatenate an (n,M, ζ)-code with itself to form a
zero-error wiretap code of blocklength 2n, note that this is
a (2n,M2, ζ2)-code. Therefore it makes sense to consider
the exponential growth rate of the maximal ζ as n tends
to infinity, which is positive if C0(TB ,TC) > 0. The set
R0(TB ,TC) actually contains those pairs of growth rates
which can be achieved jointly by M and ζ. Its interior is
nonempty, because to every positive r < C0(TB ,TC) there
exists a positive z with (r, z) ∈ R0(TB ,TC).

III. MAIN RESULTS AND PROOFS

A. Main Results

Theorem 1: Assume that Ω = 0 and C0(TB ,TC) >
log λ.

1) For every (r, z) ∈ R0(TB ,TC) with r > log λ and
z > 0 and every sufficiently small ε > 0 there exists
a transmission scheme (νk, nk, fk, ϕk)∞k=0 which is
reliable and (z − ε)-weakly secure.

2) For every (r, z) ∈ R0(TB ,TC) with r > log λ and
z > r − log λ and every sufficiently small ε > 0,
there exists a transmission scheme (νk, nk, fk, ϕk)∞k=0

which is reliable and (z−r+log λ−ε)-strongly secure.
Theorem 2: Assume that Ω > 0 and C0(TB ,TC) >

log λ. For every (r, z) ∈ R0(TB ,TC) with r > log λ, define

σ :=
z log λ

r + 3 log λ
.

Then for every 0 < ε < σ there exists a transmission scheme
(νk, nk, fk, ϕk)∞k=0 which is reliable and (σ − ε)-strongly
secure.

We do not quantify the estimation error % in the definition
of reliability, because it heavily depends on the channel and
the delay. To obtain more insight into this question, a precise
analysis of the function N(n) would be necessary. However,
this is currently out of reach for general channels even if one
disregards the security condition 2) in Definition 4, cf. [6].

B. Blocklength-1 Analysis

In this subsection, we analyze the system under the
assumption that a zero-error wiretap (1,M, ζ)-code exists.
This does not have to be the case even if C0(TB ,TC) > 0,
as was shown in [13], but it allows us to concentrate on the
properties of the dynamical system. In Subsection III-C, the
results of this subsection will be applied to codes with larger
blocklengths and the correspondingly subsampled dynamical
system to obtain Theorems 1 and 2.

We assume the existence of a (1,M, ζ)-code F (obviously
with M ≥ ζ ≥ 2). Once we have defined a quantizer, we
are ready to derive the main technical results on which the
proofs of Theorems 1 and 2 are based. We first define the
recursive partition system underlying the quantizer. Define
[A(m(0 : −1)), B(m(0 : −1))] := I0 and x̂(m(0 : −1))
to be the mid point of I0. Then for every t ≥ 0 and every
sequence m(0 : t) ∈M t+1, we recursively set

P (m(0 : t)) := A(m(0 : t− 1)) (5)

+
B(m(0 : t− 1))−A(m(0 : t− 1))

M
[m(t),m(t) + 1] ,

x̂(m(0 : t)) := mid point of P (m(0 : t)), (6)

[A(m(0 : t)), B(m(0 : t))] := λP (m(0 : t)) +

[
−Ω

2
,

Ω

2

]
.

(7)

Then we can recursively for t ≥ 0 define the quantizer q, an
uncertain channel, by

q(x(0)) := {m(0) : x(0) ∈ P (m(0))},
q(x(t),m(0 : t− 1)) := {m(t) : x(t) ∈ P (m(0 : t))},

where m(0 : t − 1) is the sequence of earlier quantizer
outputs.

For every t ≥ 0, the interval [A(m(0 : t − 1)), B(m(0 :
t − 1))] is the set of states x(t) that are possible according
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to the quantizer index sequence m(0 : t − 1) generated by
the system until time t − 1. In other words, it represents
the estimator’s knowledge about x(t) after receiving the
messages m(0), . . . ,m(t − 1) and before receiving m(t).
After reception of m(t), the estimator knows that x(t) ∈
P (m(0 : t)) and thus sends a message m(t) ∈ q(x(0 : t))
through the channel. Note that |q(x(0 : t))| = 2 if x(t)
lies on the boundary between two neighboring quantization
intervals P (m(0 : t − 1),m) and P (m(0 : t − 1),m + 1);
otherwise, |q(x(0 : t))| = 1. Given m(0 : t), the estimate of
x(t) is x̂(m(0 : t)). Clearly, every path x(0 : ∞) generates
an infinite sequence m(0 :∞). Moreover, note that the path
x̂(m(0 :∞)) generates m(0 :∞).

The following lemma from [13] takes care of the es-
timation error by bounding the length of the quantization
intervals.

Lemma 1: For t ≥ 0 and m(0 : t) ∈ {0, . . . ,M − 1}t+1,

|P (m(0 : t))| = λ

M
|P (m(0 : t− 1))|+ Ω

M
. (8)

In particular, if M > λ, then

|P (m(0 : t))| = Ω

M − λ
+

(
λ

M

)t( |I0|
M
− Ω

M − λ

)
(9)

and
sup
t
|P (m(0 : t))| = max

{
|I0|
M

,
Ω

M − λ

}
. (10)

Henceforth, we will frequently just write |P (m(0 : t))|
without specifying which m(0 : t) is meant. This is justified
by the fact that |P (m(0 : t))| only depends on t, as shown
in Lemma 1. Security in the case Ω = 0 uses the following
lemma.

Lemma 2: If Ω = 0, then at each time t ≥ 0, the interiors
of the intervals P (m(0 : t)) are disjoint, where m(0 : t)
ranges over {0, . . . ,M − 1}t+1.

Proof: Omitted due to space constraints.
With the above quantizer q, the estimator will in each time

step t receive one message m(t) by transmission through
TB using the zero-error wiretap code F and know that the
true state is contained in P (m(0 : t)). In contrast to this,
according to the eavesdropper’s information, at each time
step at least ζ messages could be the true one. Thus after
t+1 steps, there are ζt+1 possible message paths m(0 : t). As
the interiors of the corresponding quantizer sets are disjoint
according to Lemma 2, the volume of the set of possible
states according to the eavesdropper’s information therefore
is at least ζt+1|P (m(0 : t))|. This will provide weak security
and, if ζ is large enough, also strong security.

To obtain security in the case of Ω > 0 is more com-
plicated. This is due to the fact that the disjointness of the
quantizer intervals as proved above for the case Ω = 0 breaks
down for Ω > 0.

Example 1: Let λ = 2, Ω = 2, I0 = [−1, 1] and M = 4.
Then P (2) = [− 1

2 , 0] and P (3) = [0, 12 ]. In the next step,
one has

P (2, 3) =

[
−1

2
,

1

4

]
, P (3, 2) =

[
−1

4
,

1

2

]
,

so P (2, 3) and P (3, 2) are not disjoint. The closer a state
x(t) is to the origin (and the larger t), the more paths there
are which can be in this particular state at time t.

The above example shows that one can only hope to obtain
disjoint quantizer sets for a subset of message sequences. Let
c(0 :∞) be an output sequence of the channel from encoder
to eavesdropper. For every t ≥ 0, the application of the
(1,M, ζ)-code F gives rise to a set Mt := {mt,1 < mt,2 <
. . . < mt,ζ} ⊂ T−1C (c(t)) of ζ messages which could have
generated the t-th output seen by the eavesdropper. Write
Ξ := {1, . . . , ζ} and fix a T ≥ 1. For j ≥ 1 and ξ(1 : j) ∈
Ξj , we define the message sequence mξ(1:j)(0 : jT − 1) by

mξ(1:j)(s) = mξ(i),s

if 1 ≤ i ≤ j and (i − 1)T ≤ s ≤ iT − 1. All of these
message sequences are candidates for being the true sequence
according to the eavesdropper’s information. In addition, on
the j-th block of components (j − 1)T, . . . , jT − 1, the
sequences with the same history mξ(1:j−1)(0 : (j−1)T −1)
are a componentwise ordered set of ζ message sequences.
The corresponding quantizer intervals P (mξ(1:j)(0 : jT−1))
will therefore diverge due to the system instability. If T
is chosen sufficiently large, this implies disjointness of the
quantizer intervals.

Lemma 3: Let Ω > 0 and assume M > λ. Choose a
T ∈ N satisfying

T ≥ 2 +
2 logM

log λ
− log(M − λ)

log λ
. (11)

Then for every j ≥ 1, the interiors of the sets P (mξ(1:j)(0 :
jT − 1)), where ξ(1 : j) ranges over Ξj , are disjoint.

Proof: Omitted due to space restrictions.

C. Proof of the Theorems

We begin by describing the transmission schemes, which
are the same for the cases Ω = 0 and Ω > 0. Let (r, z) ∈
R0(TB ,TC) with r > log λ and let ε < min{r − log λ, z}.
For sufficiently large n there is then a zero-error wiretap
(n,M, ζ)-code F with

2nr ≥M > 2n(r−ε), ζ > 2n(z−ε). (12)

In particular, M > λn. We now consider the system

x(n)(k + 1) = λnx(k) + w(n)(k), x(n)(0) ∈ I0,

where the plant disturbances w(n)(k) are given by

w(n)(k) =

n−1∑
i=0

λn−j−1w(kn+ j)

and may assume any value in the interval [−Ω(n)/2,Ω(n)/2]
with

Ω(n) =
Ω

λ− 1
(λn − 1).

This is the n-sampled version of our original dynamical
system. It satisfies x(kn) = x(n)(k) for all k ≥ 0. It has the
same form as our original system (1). Therefore, a quantizer
q(n) can be defined for this system in the same way as for (1).
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Note that q(1) = q. Further, q(n)(x(n)(0 : k)) is a function
of x(0 : kn), but it only depends on the states at times
0, n, . . . , kn.

Next we define a transmission scheme (νk, nk, fk, ϕk)∞k=0.
We set ν0 = 1 and νk = n for all k ≥ 1 as well as nk = n
for all k ≥ 0. Thus νk 6= nk only for k = 0. The reason for
this is that in the previous section III-B, the analysis naturally
implied quantization of the initial state. This carries over to
the quantizers q(n), which makes an observation blocklength
of ν0 = 1 right at time t = 0 necessary.

The encoders fk are the concatenation of the quantizer
with F. Given a quantizer output, we just encode this output
using the zero-error wiretap channel F. Hence we can write

fk(x(0 : kn)) = F(q(n)(x(n)(0 : k))).

At the estimator node, the decoder ϕk, which knows the
history m(0 : k − 1), decodes the k-th message m(k) and
maps it to x̂(n)(m(0 : k)).

The encoded values are transmitted error-less to the es-
timator. According to Lemma 1, the diameter of the sets
P (n)(m(0 : k)) is upper-bounded by

max

{
Ω(n)

M − λn
,
|I0|
M

}
= max

{
Ω

λ− 1

λn − 1

M − λn
,
|I0|
M

}
.

Thus our transmission scheme is reliable. Next we prove the
security assertions.

Security for Ω = 0: Hardly anything remains to be
proved here. By Lemma 2, for given k, the interiors of
all possible P (n)(m(0 : k)) are disjoint. Assume the true
message sequence equals m(0 : k) and that the eavesdropper
obtains the channel output sequence c(0 : tk − 1) = c(0 :
(k + 1)n − 1). For every 0 ≤ i ≤ k and every received
output block c(in : (i+1)n−1), since the encoder applies an
(n,M, ζ)-code, there are at least ζ possible messages which
could have generated this output sequence. Thus after time
tk − 1, the eavesdropper has at least ζk+1 possible message
sequences to choose from, and the state could be in one
of ζk+1 possible intervals of length |P (n)(m(0 : k))|. With
τk = kn+1, this provides log ζ1/n-weak security, and hence
with (12) also (z − ε)-weak security.

For strong security, observe that by Lemma 1

ζk+1|P (n)(m(0 : k))| =
(
ζλn

M

)k+1 |I0|
λn

.

This tends to infinity at exponential speed if ζ > M/λn.
Again observing that τk = kn+ 1, σ-strong security follows
with the σ claimed in the statement of Theorem 1.

Security for Ω > 0: Define

T (n) := 2 +

⌈
2 logM

log λn
− log(M − λn)

log λn

⌉
.

T (n) satisfies the requirements for Lemma 3 to be valid for
the n-sampled system and quantizer q(n). For a given eaves-
dropper output sequence c(0 : jT (n)n− 1), there are ζjT

(n)

possible message sequences which could have generated this
output sequence. Out of these, the ζj message sequences
of the form mξ(1:j)(0 : jT (n) − 1) produce quantizing sets

P (n)(mξ(1:j)(0 : jT (n) − 1)) with disjoint interiors. This
gives ζ1/(nT

(n))-strong security. Given an arbitrary δ > 0, if
n is large enough, then log(M − λn) ≥ n(r − δ). Thus for
δ sufficiently small

T (n) ≤ 2 +

⌈
r

log λ
+ δ

⌉
≤ r

log λ
+ 3.

Therefore we obtain from (12)

ζ1/(nT
(n)) ≥ z − ε

T (n)
≥ z log λ

r + 3 log λ
− ε′,

where ε′ tends to 0 as δ and ε tend to zero. This shows strong
security with the claimed parameter and concludes the proof
of Theorem 2.

Remark 1: The above analyses require that the encoder
has precise knowledge about λ. However, if the true λ is
known to lie in a certain domain [λ−, λ+], we expect all
results to go through if C0(TB ,TC) > log λ+. Quantization
would be done according to λ+, but the divergence parameter
σ would be determined by λ−.
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